
FSAN/ELEG815: Statistical Learning

Gonzalo R. Arce
Department of Electrical and Computer Engineering

University of Delaware

5a: The Linear Model and Optimization

1/54

FSAN/ELEG815

Linear Regression - Credit Example

Regression → Continuous real-valued output

Classification: Credit approval (yes/no)
Regression: Credit line (dollar amount)

Input: x =

age 23 years
gender male

annual salary $30,000
years in residence 1 year

years in job 1 year
current debt $15,000

... ...

Linear regression output: h(x) = ∑d
i=0 wixi = w⊤x

2/54

FSAN/ELEG815

Credit Example Again - The data set

Input: x =

age 23 years
gender male

annual salary $30,000
years in residence 1 year

years in job 1 year
current debt $15,000

... ...

Output:

h(x) =
d∑

i=0
wixi = w⊤x

Credit officers decide on credit lines:

(x1,y1),(x2,y2), · · · ,(xN ,yN)

yn ∈ R is the credit for customer xn.

Linear regression wants to automate this task, trying to replicate human
experts decisions.

3/54

FSAN/ELEG815

Linear Regression

Linear regression algorithm is based on minimizing the squared error:

Eout(h) = E[(h(x)−y)2]

where E[·] is taken with respect to P (x,y) that is unknown.
Thus, minimize the in-sample error:

Ein(h) = 1
N

N∑
n=1

(h(xn)−yn)2

Find a hypothesis (w) that achieves a small Ein.

4/54

FSAN/ELEG815

Illustration of Linear Regression
The solution hypothesis (in blue) of the linear regression algorithm in one and
two dimensions input. The sum of square error is minimized.

One dimension (line) Two dimensions (hyperplane)

5/54

FSAN/ELEG815

Linear Regression - The Expression for Ein

Linear regression: y = w01+w1x1 +w2x2 + ...+wdxd + ϵϵϵ, ϵϵϵ ∼ N(0,σ2I).

Estimation:


ŷ1
...

ŷN


︸ ︷︷ ︸

ŷ∈RN

=


1 x11 x12 · · · x1d
...
1 xN1 xN2 · · · xNd


︸ ︷︷ ︸

X∈RN×(d+1)

·


ŵ0
ŵ1
...

ŵd


︸ ︷︷ ︸

ŵ∈R(d+1)

Ein = 1
N

N∑
n=1

(ŷn −yn)2

= 1
N

||Xŵ−y||22 = 1
N

(Xŵ−y)⊤(Xŵ−y)

= 1
N

(ŵ⊤X⊤Xŵ−y⊤Xŵ− ŵ⊤X⊤y+y⊤y)

= 1
N

(ŵ⊤X⊤Xŵ−2ŵ⊤X⊤y+y⊤y)

6/54

FSAN/ELEG815

Learning Algorithm - Minimizing Ein

ŵ = arg min
w∈Rd

1
N

||Xw −y||22

= arg min
w∈Rd

1
N

(w⊤X⊤Xw −2w⊤X⊤y+y⊤y)

Observation: The error is a quadratic function of w
Consequences: The error is an (d+1)–dimensional bowl–shaped function of w
with a unique minimum
Result: The optimal weight vector, w, is determined by differentiating Ein(w)
and setting the result to zero

∇wEin(w) = 0

▶ A closed form solution exists

7/54

FSAN/ELEG815

Example
Consider a two dimensional case. Plot the error surface and error contours.

Error Surface Error Contours

8/54

FSAN/ELEG815

Aside (Matrix Differentiation, Real Case):
Let w ∈ R(d+1) and let f : R(d+1) → R. The derivative of f (called gradient of
f) with respect to w is:

∇w(f) = ∂f

∂w =


∇0(f)
∇1(f)

...
∇d(f)

 =



∂f
∂w0
∂f

∂w1...
∂f

∂wd


Thus,

∇k(f) = ∂f

∂wk
, k = 0,1, · · · ,d

9/54

FSAN/ELEG815

Example
Now suppose f = c⊤w. Find ∇w(f)
In this case,

f = c⊤w =
d∑

k=0
wkck

and

∇k(f) = ∂f

∂wk
= ck, k = 0,1, · · · ,d

Result: For f = c⊤w

∇w(f) =


∇0(f)
∇1(f)

...
∇d(f)

 =


c0
c1
...

cd

 = c

Same for f = w⊤c.

10/54

FSAN/ELEG815

Example
Lastly, suppose f = w⊤Qw. Where Q ∈ R(d+1)×(d+1) and w ∈ Rd+1. Find
∇w(f)
In this case, using the product rule:

∇wf = ∂w⊤(Qw̄)
∂w + ∂(w̄⊤Q)w

∂w

= ∂w⊤u1
∂w + ∂u⊤

2 w
∂w

Using previous result, ∂c⊤w
∂w = ∂w⊤c

∂w = c,

∇wf = u1 +u2,

= Qw+Q⊤w = (Q+Q⊤)w, if Q symmetric, Q⊤ = Q
= 2Qw

11/54

FSAN/ELEG815

Returning to the MSE performance criteria

Ein(ŵ) =
[1
N

(ŵ⊤X⊤Xŵ−2ŵ⊤X⊤y+y⊤y)
]

Differentiating with respect to ŵ and setting equal to zero, we obtain,

▽Ein(ŵ) = 1
N

(2X⊤Xŵ−2X⊤y+0)

= 2
N

X⊤Xŵ− 2
N

X⊤y = 0

=⇒ X⊤Xŵ = X⊤y
ŵ = (X⊤X)−1X⊤y

= X†y,

where X† = (X⊤X)−1X⊤ is the Moore-Penrose pseudo-inverse of X.

12/54

FSAN/ELEG815

Summarizing


y1
...

yN


︸ ︷︷ ︸

y: credit line ($)

=


1 x11 x12 · · · x1d
...
1 xN1 xN2 · · · xNd


︸ ︷︷ ︸

X: age, gender, anual salary...

·


w0
w1
...

wd


︸ ︷︷ ︸

w: parameters

+


ϵ1
ϵ2
...

ϵN


︸ ︷︷ ︸

ϵϵϵ:randomness

Estimate w by solving linear system of equations:

y︸︷︷︸
known

= X︸︷︷︸
known

ŵ︸︷︷︸
solve

Solution:
ŵ =(X⊤X)−1X⊤y

= X†y,

where X† = (X⊤X)−1X⊤ is the Moore-Penrose pseudo-inverse of X.

13/54

FSAN/ELEG815

Xw = y where X ∈ RN×(d+1)

What happens when X is not square and invertible?
1. Underdetermined Case (N < d+1):

X

Fat-Short

yw

• In general, infinite solutions exist.
• Not enough measurements of y to find a unique solution.
• There are fewer equations than unknowns (degrees of freedom).

14/54

FSAN/ELEG815

2. Overdetermined Case (N > d+1):

X

Skinny-Tall

w y

• In general, no solution exist.
• There are more equations (constraints) than unknowns (degrees of

freedom).
• y cannot be obtained as a linear combination of the vectors in the column

space of X i.e. col(X).

Reminder: col(X): span (set of all possible linear combinations) of the
column vectors in X.

15/54

FSAN/ELEG815

Exceptions exist for both cases:

• A solution exist if y is on the column space of X i.e. col(X).

• There is no solution if y is on the space orthogonal complement of
col(X) (everything that is not in col(X)).

• Infinite solutions if w is a solution and the null space of X is not empty
i.e. dim(ker(X)) ̸= 0.

Where the null space of X is all the vectors wnull that solve:

Xwnull = 0

If and Xw = y:
X(w+βwnull) = y

16/54

FSAN/ELEG815

Moore-Penrose Pseudo-inverse with SVD (Optional)
SVD allows us to "invert" X. Given
X = ÛΣ̂V⊤ and the linear model:

Xw = y
ÛΣ̂V⊤w = y

Multiplying both sides by Û⊤:

Û⊤ÛΣ̂V⊤w = Û⊤y where Û⊤Û = I
Σ̂V⊤w = Û⊤y

Multiplying both sides by Σ̂−1 :

Σ̂−1Σ̂V⊤w = Σ̂−1Û⊤y where Σ̂−1Σ̂ = I
V⊤w = Σ̂−1Û⊤y

17/54

FSAN/ELEG815

Solving with SVD (Optional)

V⊤w = Σ̂−1Û⊤y

Multiplying both sides by V:

VV⊤w = VΣ̂−1Û⊤y where VV⊤ = I
w = VΣ̂−1Û⊤y

Then

w = VΣ̂−1Û⊤y
w = X†y

where X† = VΣ̂−1Û is the Moore-Penrose pseudo-inverse of X.

18/54

FSAN/ELEG815

SVD solutions (Optional)

1. Underdetermined case:

w = VΣ̂−1Û⊤y
Is equivalent to:

ŵ = argminw ∥ w ∥2 s.t. Xw = y
2. Overdetermined case:

w = VΣ̂−1Û⊤y
Is equivalent to:

ŵ = argminw ∥ Xw−y ∥2 Least Square Solution

19/54

FSAN/ELEG815

A real data set

16x16 pixels gray-scale images of digits from the US Postal Service Zip Code
Database. The goal is to recognize the digit in each image.

This is not a trivial task (even for a human). A typical human error Eout is
about 2.5% due to common confusions between {4,9} and {2,7}.

Machine Learning tries to achieve or beat this error.

20/54

FSAN/ELEG815

Input Representation

Since the images are 16×16 pixels:
▶ ‘raw’ input

xr = (x0,x1,x2, · · · ,x256)

▶ Linear model:
(w0,w1,w2, · · · ,w256)

It has too many many parameters.
A better input representation makes it
simpler.

Features: Extract useful information,
e.g.,
▶ Average intensity and symmetry

x = (x0,x1,x2)

▶ Linear model: (w0,w1,w2)

The descriptors must be representative of the data.

21/54

FSAN/ELEG815

Illustration of Features
x = (x0,x1,x2) x0 = 1

It’s almost linearly separable. However, it is impossible to have them all right.

22/54

FSAN/ELEG815

What Perceptron Learning Algorithm does?
Evolution of in-sample error Ein and
out-of-sample error Eout as a function
of iterations of PLA

▶ Assume we know Eout .
▶ Ein tracks Eout. PLA generalizes

well!

▶ It would never converge (data not
linearly separable).

▶ Stopping criteria: Max. number
of iterations.

Final perceptron boundary
We can do better...

23/54

FSAN/ELEG815

The ‘pocket’ algorithm

Keeps ‘in its pocket’ the best weight vector encountered up to the current
iteration t in PLA.

PLA Pocket

24/54

FSAN/ELEG815

Classification boundary - PLA versus Poket

PLA Pocket

25/54

FSAN/ELEG815

Linear Regression for Classification

▶ Linear regression learns a real-valued function y = f(x) ∈ R

▶ Binary-valued functions are also real-valued! ±1 ∈ R

▶ Use linear regression to get ŵ where ŵ⊤xn ≈ yn = ±1

▶ In this case, sign(ŵ⊤xn) is likely to agree with yn

▶ Good initial weights for classification

26/54

FSAN/ELEG815

27/54

FSAN/ELEG815

Example: Boston Housing Market
• Predict y: Median value of home in thousands.
• ŷ = ŵ⊤x
• x: 13 attributes correlated with house price.

28/54

FSAN/ELEG815

Boston Housing Dataset (1970)

29/54

FSAN/ELEG815

Example:
Predicted house value (ŷ) and the true house value (y):

0 100 200 300 400 500
-10

0

10

20

30

40

50

M
ed

ia
m

 h
om

e
va

lu
e

($
1k

)

0 100 200 300 400 500
-10

0

10

20

30

40

50

M
ed

ia
m

 h
om

e
va

lu
e

($
1k

)
Unsorted data Sorted Data

30/54

FSAN/ELEG815

The significance of Each Variable

CRIM ZN

IN
DUS

CHAS
NOX

RM
AGE

DIS
RAD

TAX

PTRATIO B

LS
TAT

M
EDV

Attribute

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

S
ig

ni
fic

an
ce

31/54

FSAN/ELEG815

Conclusion so far

▶ Linear regression aims to find linear relationship between an interested
variable y, e.g., credit line and regressors, e.g., age, gender, and etc.

▶ Expression of Ein for linear regression
▶ Close form solution of ŵ by minimizing Ein: ŵ = (X⊤X)−1X⊤y
▶ Linear regression can solve classification tasks by passing through the sign

function, sign(w⊤x)
▶ Application: The Boston housing price example

Next: an engineering way to solve linear regression: Gradient descent.

32/54

FSAN/ELEG815

Definition (Steepest Descent (SD))
Steepest descent, also known as gradient descent is an iterative technique for
finding the local minimum of a function.
Approach: Given an arbitrary starting point, the current location (value) is
moved in steps proportional to the negatives of the gradient at the current
point.
▶ SD is an old, deterministic method, that is the basis for stochastic

gradient based methods
▶ SD is a feedback approach to finding local minimum of an error

performance surface
▶ The error surface must be known a priori
▶ In the MSE case, SD converges converges to the optimal solution without

inverting a matrix

33/54

FSAN/ELEG815

Example
Consider a well structured cost function with a single minimum. The
optimization proceeds as follows:

Contour plot showing that evolution of the optimization

34/54

FSAN/ELEG815

Example
Consider a gradient ascent example in which there are multiple
minima/maxima

Surface plot showing the multiple minima and
maxima

Contour plot illustrating that the final result
depends on starting value

35/54

FSAN/ELEG815

To derive the approach, consider:

Ein = 1
N

||Xw −y||22

= 1
N

(y⊤y−y⊤Xw −w⊤X⊤y+w⊤X⊤Xw

= σ2
y −p⊤w −w⊤p+w⊤Rw

where
σ2

y = 1
N y⊤y variance estimate of desired signal

p = 1
N X⊤y – cross-correlation estimate between x and y

R = 1
N X⊤X – correlation matrix estimate of x

36/54

FSAN/ELEG815

When w is set to the (optimal) Least Squares solution w0:

w = w0 = R−1p

, then

Ein = Einmin = σ2
y −2p⊤w +p⊤(R−1)⊤RR−1p

= σ2
y −2p⊤w +p⊤R−1p

= σ2
y −pHw0

▶ Use the method of steepest descent to iteratively find w0.
▶ The optimal result is achieved since the cost function is a second order

polynomial with a single unique minimum

37/54

FSAN/ELEG815

Example
The MSE is a bowl–shaped surface, which is a function of the 2-D space
weight vector w(n)

Surface Plot
Contour Plot

Imagine dropping a marble at any point on the bowl-shaped surface.
The ball will reach the minimum point by going through the path of steepest
descent.

38/54

FSAN/ELEG815

Observation: Set the direction of filter update as: −∇Ein(n)
Resulting Update:

w(n+1) = w(n)+ 1
2µ[−∇Ein(n)]

or, since ∇Ein(n) = − 2
N X⊤y+ 2

N X⊤Xw = −2p+2Rw(n)

w(n+1) = w(n)+µ[p−Rw(n)] n = 0,1,2, · · ·

where w(0) = 0 (or other appropriate value) and µ is the step size
Observation: SD uses feedback, which makes it possible for the system to be
unstable
▶ Bounds on the step size guaranteeing stability can be determined with

respect to the eigenvalues of R (Widrow, 1970)

39/54

FSAN/ELEG815

Convergence Analysis
Define the error vector for the tap weights as

c(n) = w(n)−w0

Then using p = Rw0 in the update,

w(n+1) = w(n)+µ[p−Rw(n)]
= w(n)+µ[Rw0 −Rw(n)]
= w(n)−µRc(n)

and subtracting w0 from both sides

w(n+1)−w0 = w(n)−w0 −µRc(n)
⇒ c(n+1) = c(n)−µRc(n)

= [I−µR]c(n)

40/54

FSAN/ELEG815

Using the Unitary Similarity Transform

R = QΩΩΩQH

we have

c(n+1) = [I−µR]c(n)
= [I−µQΩΩΩQH]c(n)

⇒ QHc(n+1) = [QH −µQHQΩΩΩQH]c(n)
= [I−µΩΩΩ]QHc(n) (∗)

Define the transformed coefficients as

v(n) = QHc(n)
= QH(w(n)−w0)

Then (∗) becomes
v(n+1) = [I−µΩΩΩ]v(n)

41/54

FSAN/ELEG815

Consider the initial condition of v(n)

v(0) = QH(w(0)−w0)
= −QHw0 [if w(0) = 0]

Consider the kth term (mode) in

v(n+1) = [I−µΩΩΩ]v(n)

▶ Note [I−µΩΩΩ] is diagonal
▶ Thus all modes are independently updated
▶ The update for the kth term can be written as

vk(n+1) = (1−µλk)vk(n) k = 1,2, · · · ,M

or using recursion
vk(n) = (1−µλk)nvk(0)

42/54

FSAN/ELEG815

Observation: Conversion to the optimal solution requires

lim
n→∞w(n) = w0

⇒ lim
n→∞c(n) = lim

n→∞w(n)−w0 = 0

⇒ lim
n→∞v(n) = lim

n→∞QHc(n) = 0
⇒ lim

n→∞vk(n) = 0 k = 1,2, · · · ,M (∗)

Result: According to the recursion

vk(n) = (1−µλk)nvk(0)

the limit in (∗) holds if and only if

|1−µλk| < 1 for all k

Thus since the eigenvalues are nonnegative, 0 < µλmax < 2, or

0 < µ <
2

λmax

43/54

FSAN/ELEG815

Example: Predictor

Consider a two–tap predictor for real–valued input

44/54

FSAN/ELEG815

Example: Predictor
Use x(n−1) =

[
x(n−1)
x(n−2)

]
to predict x(n) such that

y(n) = x̂(n) = x(n−1)⊤
[

w1(n)
w2(n)

]
= x(n−1)⊤w(n)

Xw = y
x(2) x(1)
x(3) x(2)

... ...
x(n−1) x(n−2)


︸ ︷︷ ︸

X∈RN×2

[
w1
w2

]
=


x(3)
x(4)

...
x(n)


︸ ︷︷ ︸

y∈RN

R = 1
N XT X p = 1

N XT y

45/54

FSAN/ELEG815

Example: Predictor

Analyzed the effects of the following cases:
▶ Varying the eigenvalue spread χ(R) = λmax

λmin
while keeping µ fixed

▶ Varying µ and keeping the eigenvalue spread χ(R) fixed

46/54

FSAN/ELEG815

AR model of order 2

Outputs of AR model of order 2 with different parameters w1 and w2.

47/54

FSAN/ELEG815

SD loci plots (with shown Ein(n) contours) as a function of [w1(n),w2(n)] for
step-size µ = 0.3

▶ Eigenvalue spread: χ(R) = 1.22
▶ Small eigenvalue spread ⇒ modes

converge at a similar rate

▶ Eigenvalue spread: χ(R) = 3
▶ Moderate eigenvalue spread ⇒ modes

converge at moderately similar rates

48/54

FSAN/ELEG815

SD loci plots (with shown Ein(n) contours) as a function of [w1(n),w2(n)] for
step-size µ = 0.3

▶ Eigenvalue spread: χ(R) = 10
▶ Large eigenvalue spread ⇒ modes

converge at different rates

▶ Eigenvalue spread: χ(R) = 100
▶ Very large eigenvalue spread ⇒ modes

converge at very different rates
▶ Principle direction convergence is fastest

49/54

FSAN/ELEG815

Learning curves of steepest-descent algorithm with step-size parameter
µ = 0.3 and varying eigenvalue spread.

50/54

FSAN/ELEG815

SD loci plots (with shown Ein(n) contours) as a function of [w1(n),w2(n)]
with χ(R) = 10 and varying step–sizes

▶ Step–sizes: µ = 0.3
▶ This is over–damped ⇒ slow

convergence

▶ Step–sizes: µ = 1
▶ This is under–damped ⇒ fast (erratic)

convergence

51/54

FSAN/ELEG815

Stochastic Gradient Descent (SGD)
Instead of considering the full batch, for each iteration, pick one training data
point (Xn,yn) at random and apply GD update to e(h(xn,yn))
The weight update of SGD is:

w(t+1) = w(t)−η∇en(w(t))

For e(h(xn,yn)) = (w⊤xn −yn)2 i.e. for the mean squared error:

∇en(w) = 2xn(w⊤xn −yn) w⊤xn = x⊤
n w

= 2xn(x⊤
n w−yn)

= 2(xnx⊤
n w−xnyn)

= 2(R̂w− p̂)

where R̂ = xnx⊤
n is the instantaneous estimate of R and p̂ = xnyn is the

instantaneous estimate of p.

52/54

FSAN/ELEG815

Stochastic Gradient Descent (SGD)

Since n is picked at random, the expected weight change is:

En [−∇e(h(xn,yn))] = 1
N

N∑
n=1

−∇e(h(xn,yn))

= −∇Ein

Same as the batch gradient descent.

Result: On ‘average’ the minimization proceeds in the right direction
(remember LMS).

53/54

FSAN/ELEG815

Stochastic Gradient Descent (SGD)
Instead of considering the full batch, for each iteration, pick one training data
point (xn,yn) at random and apply GD update to e(h(xn,yn))
The weight update of SGD is:

w(t+1) = w(t)−η∇en(w(t))

Since n is picked at random, the expected weight change is:

En [−∇e(h(xn,yn))] = 1
N

N∑
n=1

−∇e(h(xn,yn))

= −∇Ein

Same as the batch gradient descent.

Result: On ‘average’ the minimization proceeds in the right direction.

54/54

FSAN/ELEG815

Benefits of SGD
1. Cheaper computation (by

a factor of N compare to
GD)

2. Randomization
3. Simple

Rule of thumb:
Start with:

η = 0.1 works!

Randomization helps to avoid local minima and flat
regions.

SGD is successful in practice!

	Steepest Descent
	Convergence Analysis
	Example: Predictor

