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Linear Regression - Credit Example

Regression — Continuous real-valued output

Classification: Credit approval (yes/no)
Regression: Credit line (dollar amount)

age 23 years
gender male
annual salary | $30,000
Input: x =/ years in residence | 1 year
years in job 1 year
current debt $15,000

Linear regression output: h(x) = sz:o wiT; =W X
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Credit Example Again - The data set

age 23 years
gender male Output:
annual salary | $30,000
Input: x =| years in residence | 1 year szxz w' x
years in job 1 year
current debt $15,000

Credit officers decide on credit lines:
(x1,91), (X2,92), -+, (XN, YN)
yn € R is the credit for customer x,,.

Linear regression wants to automate this task, trying to replicate human
experts decisions.
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Linear Regression

Linear regression algorithm is based on minimizing the squared error:
Eout(h) = E[(h(x) = y)?]

where [E[-] is taken with respect to P(x,y) that is unknown.
Thus, minimize the in-sample error:

1 XN )2
h = 2 (bl

Find a hypothesis (w) that achieves a small Ej,.



FSAN/ELEG815

[llustration of Linear Regression

The solution hypothesis (in blue) of the linear regression algorithm in one and

two dimensions input. The sum of square error is minimized.

T ‘Pl
x %\/xz
One dimension (line) Two dimensions (hyperplane)




FSAN/ELEG815

Linear Regression - The Expression for E;,

Linear regression: 'y = wol+wiX)+woXo+...+wgXq+€, €~ N(O,O’2I).
. o
71 I x11 x12 -+ X4 By
Estimation: | : = | P : .
ON I xy1 Xn2 o+ Xnd .
—— Wd
9€RN XGRNX(d+1) —

1o, .
= NHXw—sz—N(XW y) ' (Xw—y)
w X Xw—y ' Xw—w' XTy+y'y)

= N(wawa —2w XTy+y'y)
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Learning Algorithm - Minimizing F;,

1
W = arg min —||Xw—yl|
gmin, o [Xw—yl?

: Lo TyT TyTo, T
= argmin —(w' X' Xw—-2w' ' X' 'y+
gmin y+y'y)

Observation: The error is a quadratic function of w

Consequences: The error is an (d+ 1)-dimensional bowl-shaped function of w
with a unique minimum

Result: The optimal weight vector, w, is determined by differentiating E;,(w)
and setting the result to zero

VwEin(w)=0

» A closed form solution exists
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Example

Consider a two dimensional case. Plot the error surface and error contours.
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Figure 5.6 Error-performance surface of the two-tap transversal fiter described in the
numerical examy ple.

Figure 5.7 Contour plots of the error-performance surface depicted in Fig. 5.6.

Error Surface Error Contours
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Aside (Matrix Differentiation, Real Case):
Let w € R and let f:R(@*D — R. The derivative of f (called gradient of

f) with respect to w is:

Vo(f) 821];
vu(n =2 | T o
Va(f) é%d
Thus,
Vi) =L k=0
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Example
Now suppose f =c'w. Find V(f)
In this case,
d
f= c'w= Z Wk Ck
k=0
and
0

Result: For f = c'w

Vo(f) o

Vi(f) C1

vW(f) = . = : =cC
Va(f) Cq

Same for f =w'c.
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Example
Lastly, suppose f =w ' Qw. Where Q € RU+TD*(@+1) and w e R4, Find

Vuw(f)

In this case, using the product rule:

ow'(Qw) o(w'Q)w

\% = +
Wf ow ow
8WTU1 8UTW
= + 2
ow ow
T T
Using previous result, %TW = 3\(9)'WC —c

Vwf = ui+uy,
Qw—i—QTW _ (Q—i—QT)W, if Q symmetric, QT =Q
2Qw
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Returning to the MSE performance criteria

" I N
Ein(w) = {N<WTXTXW —ow XTy+y'y)

Differentiating with respect to w and setting equal to zero, we obtain,

1
VEin(W) = N(2XTXW—2xTy+o)
2 o 2T
= ZX"Xw—=XTy=
NX AW Xy =0
— X'Xw = X'y
w o= (XTX)"!XTy
= Xly,

where X' = (X"X)"1X" is the Moore-Penrose pseudo-inverse of X.
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Summarizing

1 X wo €1
X X PR
n 11 12 1d w1 €
A P O
YN 1 Xn1 XN2 -+ XNd '
—— Wy EN
y: credit line ($) X: age, gender, anual salary... — ~—

w: parameters  e:randomness

Estimate w by solving linear system of equations:

Solution:

where X = (XTX)_1XT is the Moore-Penrose pseudo-inverse of X.
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Xw =y where X € RV x(d+1)

What happens when X is not square and invertible?

1. Underdetermined Case (N < d+1):
Fat-Short

X =y

e In general, infinite solutions exist.
e Not enough measurements of y to find a unique solution.

e There are fewer equations than unknowns (degrees of freedom).
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2. Overdetermined Case (N > d+1):

Skinny-Tall

X =y

e In general, no solution exist.

e There are more equations (constraints) than unknowns (degrees of
freedom).

e y cannot be obtained as a linear combination of the vectors in the column
space of X i.e. col(X).

Reminder: col(X): span (set of all possible linear combinations) of the
column vectors in X.
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Exceptions exist for both cases:

e A solution exist if y is on the column space of X i.e. col(X).

e There is no solution if y is on the space orthogonal complement of
col(X) (everything that is not in col(X)).

¢ Infinite solutions if w is a solution and the null space of X is not empty
i.e. dim(ker(X)) #0.

Where the null space of X is all the vectors w,,,;; that solve:
Xwnull =0

If and Xw =y:
X(W+6wnull) =Yy



FSAN/ELEG815

Moore-Penrose Pseudo—inverse With SVD (Optional)

SVD/a\Ilgws us to "invert" X. Given
X =UXV' and the linear model:

Xw =y

UZV'w = y

Multiplying both sides by U’
U'UZV'w = ﬁTy
SViw = ﬁTy

Multiplying both sides by >l

SIEViw = f‘lﬁTy

Viw = E_lﬁTy

where

where

U'Uu=1

DI |

Rd+1><d+1

)

]Rd+1><d+1
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Solving with SVD (Optional)

Viw = i_lﬁTy
Multiplying both sides by V:

VvViw = VZ Uy where VV' =1
w = Vi]\_lﬁTy

Then

w = V/Z\J_lﬁTy
w = XTy

where X' = VE-1U is the Moore-Penrose pseudo-inverse of X.



FSAN/ELEG815

SVD solutions (Optional)

1. Underdetermined case:
w= V/E\J_lﬁTy
Is equivalent to:
w =argmin,, |[wl2 st Xw=y
2. Overdetermined case:
w= Vi_lﬁTy

Is equivalent to:

w = argmin,, || Xw—y ||2 Least Square Solution
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A real data set

16x16 pixels gray-scale images of digits from the US Postal Service Zip Code
Database. The goal is to recognize the digit in each image.

This is not a trivial task (even for a human). A typical human error E,,; is
about 2.5% due to common confusions between {4,9} and {2,7}.

Machine Learning tries to achieve or beat this error.
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Input Representation

Since the images are 16 x 16 pixels:

> ‘raw’ input

Xp = (10,71,72,"+ ,2256) . :
e Features: Extract useful information,
» Linear model: e.g.,
(wo, w1, w2, -+, wase) » Average intensity and symmetry
It has too many many parameters. x = (10, r1,72)
A better input representation makes it > Linear model: (w0, wy,ws)
i - Uy Y
simpler.

The descriptors must be representative of the data.
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l[lustration of Features

x = (rg,x1,72) wp=1

: Symmetry

x2

-~

=
S

21 @ Average Intensity

It's almost linearly separable. However, it is impossible to have them all right.
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What Perceptron Learning Algorithm does?

out-of-sample error E,,; as a function linearly separable).

of iterations of PLA » Stopping criteria: Max. number

0% Fou of iterations.

10%

1%

E-

n

0 250 500 750 1000
Interations

5 : Symmetry

» Assume we know E,,; .
> ; i
Ej;, tracks Eyy;. PLA generalizes Final perceptron boundary

|
welll! We can do better...

A
1 : Average Intensity
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The ‘pocket’ algorithm

Keeps ‘in its pocket’ the best weight vector encountered up to the current
iteration ¢t in PLA.

PLA Pocket
50% Eout 50%
10% 10%
|| |
L Eout
1% 1%
Ein
Ein
0 250 500 750 1000 0 250 500 750 1000

Interations Interations
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Classification boundary - PLA versus Poket

: Symmetry

x2

*
x1 : Average Intensity

Pocket

o : Symmetry

x1 : Average Intensity
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Linear Regression for Classification

> Linear regression learns a real-valued function y = f(x) € R
» Binary-valued functions are also real-valued! +1 € R

» Use linear regression to get w where WTxn ~y, ==+1

» In this case, sign(\fvTxn) is likely to agree with y,

» Good initial weights for classification



FSAN/ELEG815

Linear regression boundary

X
*xx *xx"
E % x°
w ¥s
- X
E X
> x %
wn % X
X x
0 X

Average Intensity
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Example: Boston Housing Market

e Predict y: Median value of home in thousands.

A~ AT
e y=W X

e x: 13 attributes correlated with house price.
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Boston Housing Dataset (1970)

The Boston Housing Dataset is a derived from information collected by the U.S. Census Service concerning housing in the
area of Boston MA. The following describes the dataset columns:

e CRIM - per capita crime rate by town

* ZN - proportion of residential land zoned for lots over 25,000 sq.ft.
* INDUS - proportion of non-retail business acres per town.

* CHAS - Charles River dummy variable (1 if tract bounds river; 0 otherwise)
e NOX - nitric oxides concentration (parts per 10 million)

* RM - average number of rooms per dwelling

e AGE - proportion of owner-occupied units built prior to 1940

* DIS - weighted distances to five Boston employment centres

* RAD - index of accessibility to radial highways

e TAX - full-value property-tax rate per $10,000

e PTRATIO - pupil-teacher ratio by town

* B-1000(Bk - 0.63)"2 where Bk is the proportion of blacks by town
e LSTAT - % lower status of the population

« MEDV - Median value of owner-occupied homes in $1000's
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Example:

Predicted house value (y) and the true house value (y):

- b -

L 401 € 407

3 3

= 30¢% = 307

> >

) ] L

g 20 g 20+ .

_g 10 7 3 -g 10 B

= ! = f

< < °

= 0 H——Predicted y = 0 ——Predicted ¥

g ——True y g : ——True y

= -10 ‘ : : : : = -10 : : : ‘ ‘
0 100 200 300 400 500 0 100 200 300 400 500

Neighborhood Neighborhood

Unsorted data Sorted Data
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Conclusion so far

» Linear regression aims to find linear relationship between an interested
variable y, e.g., credit line and regressors, e.g., age, gender, and etc.

» Expression of E;, for linear regression

> Close form solution of W by minimizing Ej,: w= (X' X)X Ty

» Linear regression can solve classification tasks by passing through the sign
function, sign(w 'x)

» Application: The Boston housing price example

Next: an engineering way to solve linear regression: Gradient descent.
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Definition (Steepest Descent (SD))
Steepest descent, also known as gradient descent is an iterative technique for

finding the local minimum of a function.

Approach: Given an arbitrary starting point, the current location (value) is
moved in steps proportional to the negatives of the gradient at the current
point.
» SD is an old, deterministic method, that is the basis for stochastic
gradient based methods
» SD is a feedback approach to finding local minimum of an error
performance surface
» The error surface must be known a priori

» In the MSE case, SD converges converges to the optimal solution without
inverting a matrix



FSAN/ELEG815

Example

Consider a well structured cost function with a single minimum. The
optimization proceeds as follows:

Contour plot showing that evolution of the optimization



FSAN/ELEG815

Example

Consider a gradient ascent example in which there are multiple
minima/maxima

A‘, VAB'AN | ‘
A ) 7
o
i
'I

i

Surface plot showing the multiple minima and Contour plot illustrating that the final result

maxim .
axima depends on starting value
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To derive the approach, consider:

1
Ein = ~lXw =yl
SOy =y Xw - w X Ty w X Xw
= aj—pTw—pr+wTRw

where

05 = iny variance estimate of desired signal

p= NXT — cross-correlation estimate between x and y

R = %XTX — correlation matrix estimate of x
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When w is set to the (optimal) Least Squares solution wy:

w=wo=Rp

, then
Ein = Einpm =0.-2p w+p (R™H)'RR ™ 'p
:J§—2p w+pTR*1p
ZU;—PHWO

» Use the method of steepest descent to iteratively find wy.

» The optimal result is achieved since the cost function is a second order
polynomial with a single unique minimum
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The MSE is a bowl-shaped surface, which is a function of the 2-D space

weight vector w(n)

Ein (W)

N

T 1

; |

Wo

w1 W

Surface Plot

» W2

W _OFEn
8w1

_VEzn

o 811)2

Contour Plot

Imagine dropping a marble at any point on the bowl-shaped surface.
The ball will reach the minimum point by going through the path of steepest

descent.
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Observation: Set the direction of filter update as: —V E;,(n)

Resulting Update:
1
w(n 1) = w(n) + 5[~V ()
or, since VEj,(n) = X y+ NXTXW = —2p+2Rw(n)

w(n+1) = w(n) + ulp—Rw(n)] n=012
where w(0) = 0 (or other appropriate value) and p is the step size

Observation: SD uses feedback, which makes it possible for the system to be
unstable

» Bounds on the step size guaranteeing stability can be determined with
respect to the eigenvalues of R (Widrow, 1970)
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Convergence Analysis

Define the error vector for the tap weights as
c(n) =w(n)—wy
Then using p = Rwy in the update,

wn+1l) = w(n)+
= w(n)+ uRwy—Rw(n)]
~ w(n)— pRe(n)

and subtracting wy from both sides

wn+1)—wyg = w(n)—wy—uRc(n)
=c(n+1) = c(n)—pRe(n)
= [I—puR]e(n)
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Using the Unitary Similarity Transform

R = QQQ”
we have
c(n+1) = [I-pR]e(n)
= [1-uQQQ"Ic(n)
=Q"c(n+1) = [Q"—1Q"QQQ"]c(n)
= [[-pQQ"c(n)  (¥)

Define the transformed coefficients as

v(n) = Qe(n)
— Q" (w(n) - wo)

Then (%) becomes
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Consider the initial condition of v(n)
v(0) = Q"(w(0)—wp)
= —Qfwy [if w(0) = 0]
Consider the k' term (mode) in
vin+1) = [1—puv(n)
» Note [I— €] is diagonal

» Thus all modes are independently updated
» The update for the k¥ term can be written as

ve(n+1)=(1—prp)vg(n) k=1,2,--- M

or using recursion
v(n) = (1= pAg)" vk (0)
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Observation: Conversion to the optlmal solution requires

nhﬁn&)w(n) = Wy
= lim c(n) = lim w(n)—wy=0
= Jim v(n) = lim Q"c(n)=0
= lim vp(n) = 0 k=12 M (%)

Result: According to the recursion

v (n) = (1= pAg)"vg(0)
the limit in () holds if and only if

|1 —pAg| <1 forall k

Thus since the eigenvalues are nonnegative, 0 < puApax < 2, or

O<p<

)\max
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Example: Predictor

Consider a two—tap predictor for real—valued input

predict

x(n) 1 X(n'— 1) 1 x(n—2)

i

b 2(n)
\/ o n=2n-1 n n+1--
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Example: Predictor

Use x(n—1) = l x(:1:: ) ] to predict x(n) such that

y(m) =) =x(n =17 | 210 | 1) (o)
Xw =y
z(2)  x(1) (3)
z(3)  x(2) [ wy ] z(4)
wy | ;
z(n—1) z(n—2) x(n)
XeRN %2 yeRN
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Example: Predictor

predict

x(n) z_l x(n'— 1) Z_1 x(n—2) q

@ e

b 2(n)
U o n—2n-—1 n n+1---

Analyzed the effects of the following cases:
» Varying the eigenvalue spread x(R) = % while keeping p fixed
» Varying 1 and keeping the eigenvalue spread x(R) fixed
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AR model of order 2

AR process, u(n)
T T

(a)

AR process, u(n)
T T

(b)

AMAAM“ WYV MAM Aashd AAAMAAAA
TR AR A | wvv vvvv VYYVvvYy

AR process, u(n)
T

0 256
Time, n

Outputs of AR model of order 2 with different parameters w; and ws.
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SD loci plots (with shown Ej,,(n) contours) as a function of [w1(n),wa(n)] for

step-size ©=0.3

1
|
2.0 l
| | |
. . |
7 o0 ? 0.0 ' _T
) B +
=03 270; 0-03 l
N ;7 22 [ ;m ‘
vzoi el T J
20 o5 20 ' 40 20 w
> Eigenvalue spread: x(R)=1.22 > Eigenvalue spread: x(R)=3
> Small eigenvalue spread = modes » Moderate eigenvalue spread = modes

converge at a similar rate converge at moderately similar rates
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SD loci plots (with shown E;;,(n) contours) as a function of [wy(n),wa(n)] for
step-size 4 =0.3

2] e 80 g

wy{m
o
=

%

-4.8

Xl

wylal

40

wylm

-840

-4.0

0.0

wyla]

40

> Eigenvalue spread: x(R) =100

» Very large eigenvalue spread = modes
converge at very different rates

> Eigenvalue spread: x(R) =10
P Large eigenvalue spread = modes

converge at different rates » Principle direction convergence is fastest
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Learning curves of steepest-descent algorithm with step-size parameter
(= 0.3 and varying eigenvalue spread.

Ny = 1.22
—_——— A/, =3
[ —_— Ay = 10
s X, /A, = 100
0.5 i‘

Jin)

ool L A e e
0 100 200
Time, n
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SD loci plots (with shown E;,(n) contours) as a function of [wi(n),wa(n)]
with x(R) =10 and varying step—sizes

40 T 4.0 -+

wylat
o
=

5 \ )
= 0.G t ;’ P
=
r=
u=03
r=0 #=10
:i; ?;i"” (= 1.7
4.0 -40 + i_‘:m
~40 [+X:3 40 48 a0 4.0
wylnl w, ta}
> Step-sizes: u=0.3 » Step—sizes: =1
» This is over—-damped = slow » This is under-damped = fast (erratic)

convergence convergence
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Stochastic Gradient Descent (SGD)

Instead of considering the full batch, for each iteration, pick one training data
point (X,,,¥,) at random and apply GD update to e(h(x,,y,))

The weight update of SGD is:

w(t+1) =w(t) —nVe,(w(t))

For e(/(Xn,yn)) = (W' x, —1y,)? i.e. for the mean squared error:

Ve, (w) = 2xn(wan —Yn) w'x, = xzw
= 2xn(x;w —Yn)
= 2(xnxlw — XnYn)
— 2(Rw—p)

where R = xnx is the instantaneous estimate of R and p = x,,y,, is the
instantaneous estimate of p.
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Stochastic Gradient Descent (SGD)

Since n is picked at random, the expected weight change is:

1 N
E, [_ve(h(xmyn))] = N Z _ve(h(xmyn))
n=1
= _VEz'n
Same as the batch gradient descent.

Result: On ‘average’ the minimization proceeds in the right direction
(remember LMS).
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Stochastic Gradient Descent (SGD)

Instead of considering the full batch, for each iteration, pick one training data
point (x,,y,) at random and apply GD update to e(h(x,,¥,))

The weight update of SGD is:
w(t+1) =w(t) —nVe,(w(t))

Since n is picked at random, the expected weight change is:

1 N
E, [_ve(h(xn,>yn))] = N Z _ve(h<xmyn)>
n=1
= _VEin
Same as the batch gradient descent.

Result: On ‘average’ the minimization proceeds in the right direction.
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Benefits of SGD

1. Cheaper computation (by
a factor of N compare to

GD)

2. Randomization

Ein

3. Simple
Rule of thumb: Weights, w
Start with: Randomization helps to avoid local minima and flat
n=0.1 works! regions.

SGD is successful in practice!
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